FAO Strategic Objective 5 – Resilience, in FAO

Sustainable development cannot be achieved without resilient livelihoods. People around the world are increasingly exposed to natural hazards and crises – from drought, floods, earthquakes and disease epidemics to conflict, market shocks and complex, protracted crises. Worldwide, 75 percent of poor and food insecure people rely on agriculture and natural resources for their living. They are usually hardest hit by disasters.   

The recurrence of disasters and crises undermines countries’ efforts to eradicate hunger and malnutrition and to achieve sustainable development. People who rely on farming, livestock, forests or fishing for their food and income – around one-third of the world’s population – are often the most vulnerable and affected. Climate change, in particular extreme weather-related shocks, is exacerbating the situation. SP5 assists countries to increase the resilience of households, communities and institutions to more effectively prevent and cope with threats and disasters that impact agriculture, food security and nutrition. It focuses across all agricultural subsectors on . 

  • natural hazards and related disasters such as floods, droughts and earthquakes 
  • food chain threats caused by plant pests and diseases and animal diseases, as well as food safety threats such as radio nuclear contamination or avian flu
  • conflicts and protracted crises.

SP5 helps countries and communities to prevent and cope with these different areas of risks and shocks through normative guidance, technical standards and their implementation in the field. FAO resilience work feeds into global processes such as the Sendai Framework for Disaster Risk Reduction, the One Health approach for food chain crises and the Committee on World Food Security's Agenda for Action for addressing food insecurity in protracted crises. SP5 country support like the implementation of DRR good practices at country and local levels is delivered in close collaboration with and based on technical advice from FAO technical divisions, including AGA, AGP, CBC, FIA and FOA.

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Previous, Climate, Energy and Tenure Division (NRC) in FAO

The Climate Impact, Adaptation and Environmental Sustainability team of the Climate, Energy and Tenure Division (NRC) develops the knowledge base on the impact of climate, climate change and climate variability on agriculture, and facilitates the use of this information and knowledge through field projects. The team also supports capacity development at national level by supporting governments to integrate disaster risk reduction in the agriculture sector as well as identifying, testing and validating in cooperation with various partners climate change adaptation and disaster risk reduction good practice options to build resilience of all actors in agriculture to the impact of climate change and extreme weather events.

Organic Agriculture work in FAO:

The coordination of FAO’s organic agriculture activities is housed in the Climate, Energy and Tenure Division. Since 1999, the Organic Agriculture programme works along three main areas:

  • Strengthening the ability to exchange information and to set-up organic agriculture networks, in order to ensure that producers, operators and governments have access to the reliable and quality information needed for informed decision-making, for directing research and extension, and for making investments;
  • Developing and disseminating knowledge and tools that support organic plant protection, soil and nutrient management, animal husbandry and post-harvest operations, especially in developing countries and market-marginalized areas;
  • Assisting governments in designing the types of legal and policy frameworks that provide support to farmers by facilitating the marketing and trade of certified organic products that meet international inspection and certification standards.

For queries related to climate change and disaster risk reductions, you can contact: DRR-for-FNS@fao.org or climate-change@fao.org

For queries on organic agriculture, you can contact: Nadia Scialabba. Nadia.Scialabba@fao.org 

Country: 
Italy

Technologies from FAO Strategic Objective 5 – Resilience, in FAO

 

Goat raising in controlled areas and vaccination in Lao PDR

This disaster risk reduction good practice consists in raising goats in controlled areas to improve livestock management and prevent the spread of diseases between different herds. Furthermore, goats are vaccinated against foot and mouth disease and other parasites.
This technology describes the how to build a homestead and give some indications on how to manage vaccinated goats in the confinement.

Rainwater harvesting systems for cabbage growing in Uganda

This technology describes utilizing rooftop water harvesting facilities to increase the availability of water for domestic use and irrigation of backyard cabbage gardens. This measure allows small-scale farmers to harvest rainwater from roofs and store it in tanks, ensuring cabbage production also during the dry season, when it would be otherwise impossible.
The combination of rainwater harvesting with other good practices (e.g. mulching, manuring) help increase productivity while reducing soil erosion, eventually strengthening the resilience of farmers to the impact of dry spells.

Indoor oyster mushroom cultivation for livelihood diversification and increased resilience in Uganda

This practice describes indoor mushroom (Pleurotus spp.) cultivation as a means to diversify livelihoods and strengthen the resilience of farmers in Uganda. Indoor mushroom cultivation was promoted by the Global Climate Change Alliance (GCCA) project on Agriculture Adaptation to Climate Change in the central cattle corridor of Uganda.
Mushrooms can be grown at very low cost and in relatively short time. It is a practice that can be adopted by small-scale farmers to diversify their income during the dry season, when lack of water may challenge the cultivation of other crops, and reduce their vulnerability to adverse weather. Indeed, mushroom production is done indoor and it requires little amount of water compared to other crops.

Improved chicken breeds raised with vaccination in Lao PDR

This technology describes the cost-benefit analysis of rearing improved chicken breeds with vaccination in Lao PDR. Improved chicken breeds grow faster and are highly resistant to stresses. Moreover, the improved chickens were vaccinated against cholera and Newcastle diseases, further reducing their mortality rate.

Rooftop water collection, drip irrigation and plastic mulching in home garden conditions in drought prone areas of Cambodia

In Cambodia, drought can have different impacts: delay of rainfall onset in early wet season, erratic variations of rainfall onset, early ending of rains during wet season, and longer dry spell in July and August. This technology describes three different technologies and analyses the costs and benefits of their combined application: rooftop water harvesting, drip irrigation and plastic mulching in home garden conditions. As a result of the combined application of those good practices (GPOs), the resistance against drought is increased and a second cropping period is possible. The GPOs have been tested and validated in 19 Farms in the Kampong Speu (3) and Oddar Meanchey (16) Provinces in Cambodia.

Multi-stress tolerant Green Super Rice in the Philippines. Cost benefit analysis based on field testing of some lines of Green Super Rice

This technology describes the testing of multi-stress tolerant Green Super Rice (GSR) varieties in the Philippines. The benefits and constraints compared to local varieties are shown in a cost-benefit analysis.

Agroforestry Coffee cultivation in combination with mulching, trenches and organic composting in Uganda

This technology describes a combination of good practices for soil and water conservation that were introduced to coffee farmers in the central cattle corridor of Uganda, with the aim to enhance their resilience to dry spells, pests and diseases, as part of the Global Climate Change Alliance (GCCA) project on Agriculture Adaptation to Climate Change in Uganda.
The combination of good practices include:
(a) mulching, a low cost practice that consists in covering the soil with locally available degradable plant materials to reduce water runoff and evapotranspiration;
(b) digging contour trenches for harvesting water during the rainy season while preserving soil quality;
(c) preparation and application of organic compost to improve soil fertility at low costs; and
(d) planting shade trees within the coffee plantation in order to provide shade and improve soil fertility.

Rainwater harvesting systems for ntula/eggplant (Solanum aethiopicum L.) growing in Uganda

This technology describes utilizing rooftop water harvesting facilities to increase the availability of water for domestic use and irrigation of backyard ntula/ eggplant (Solanum aethiopicum L.) gardens.
This measure allows small-scale farmers to harvest rainwater from roofs and store it in tanks, ensuring ntula production also during the dry season, when it would be otherwise impossible.
The combination of rainwater harvesting with other good practices (e.g. staking, mulching, manuring) help increase productivity while reducing soil erosion, eventually strengthening the resilience of farmers to the impact of dry spells.

Improved cattle breeds zero grazing with drought tolerant fodder in Uganda

This technology describes the introduction of improved cattle breeds in Uganda. The improved breeds are more productive and resistant to diseases and are managed applying the zero grazing production system, a type of production system where the animals are kept in an enclosure to control input use and to reduce the incidence of diseases. This breed is fed with drought tolerant fodder to ensure cattle feed availability also in dry seasons.
This mix of good practices were introduced to increase productivity and enhance the resilience of cattle raising to increasing dry spells and diseases in the central cattle corridor of Uganda.

How to buffer impacts of climate variability and dry spells in home gardens by using botanical pesticides and liquid compost, Cambodia

This technology offers a low-cost method used in Cambodia to control and manage pests for crop production while limiting adverse impacts of residue toxicity. It describes the methods of producing botanical insecticides and describes how to produce compost using the heap method and how to make liquid compost. The costs and benefits of the combined application of botanical insecticides with the production and use of liquid compost is presented.